Decoding Mental Workload in Virtual Environments: A fNIRS Study using an Immersive n-back Task.
Annu Int Conf IEEE Eng Med Biol Soc
; 2019: 3103-3106, 2019 Jul.
Article
en En
| MEDLINE
| ID: mdl-31946544
Virtual Reality (VR) has emerged as a novel paradigm for immersive applications in training, entertainment, rehabilitation, and other domains. In this paper, we investigate the automatic classification of mental workload from brain activity measured through functional near-infrared spectroscopy (fNIRS) in VR. We present results from a study which implements the established n-back task in an immersive visual scene, including physical interaction. Our results show that user workload can be detected from fNIRS signals in immersive VR tasks both person-dependently and -adaptively.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Encéfalo
/
Carga de Trabajo
/
Espectroscopía Infrarroja Corta
/
Realidad Virtual
Límite:
Humans
Idioma:
En
Revista:
Annu Int Conf IEEE Eng Med Biol Soc
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Estados Unidos