Your browser doesn't support javascript.
loading
Development of Tripolymeric Triaxial Electrospun Fibrous Matrices for Dual Drug Delivery Applications.
Nagiah, Naveen; Murdock, Christopher J; Bhattacharjee, Maumita; Nair, Lakshmi; Laurencin, Cato T.
Afiliación
  • Nagiah N; Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America.
  • Murdock CJ; Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America.
  • Bhattacharjee M; Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America.
  • Nair L; Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America.
  • Laurencin CT; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Farmington, Connecticut, United States of America.
Sci Rep ; 10(1): 609, 2020 01 17.
Article en En | MEDLINE | ID: mdl-31953439
Since the first work by Laurencin and colleagues on the development of polymeric electrospinning for biomedical purposes, the use of electrospinning technology has found broad applications in such areas of tissue regeneration and drug delivery. More recently, coaxial electrospinning has emerged as an important technique to develop scaffolds for regenerative engineering incorporated with drug(s). However, the addition of a softer core layer leads to a reduction in mechanical properties. Here, novel robust tripolymeric triaxially electrospun fibrous scaffolds were developed with a polycaprolactone (PCL) (core layer), a 50:50 poly (lactic-co-glycolic acid) (PLGA) (sheath layer) and a gelatin (intermediate layer) with a dual drug delivery capability was developed through modified electrospinning. A sharp increase in elastic modulus after the incorporation of PCL in the core of the triaxial fibers in comparison with uniaxial PLGA (50:50) and coaxial PLGA (50:50) (sheath)-gelatin (core) fibers was observed. Thermal analysis of the fibrous scaffolds revealed an interaction between the core-intermediate and sheath-intermediate layers of the triaxial fibers contributing to the higher tensile modulus. A simultaneous dual release of model small molecule Rhodamine B (RhB) and model protein Fluorescein isothiocynate (FITC) Bovine Serum Albumin (BSA) conjugate incorporated in the sheath and intermediate layers of triaxial fibers was achieved. The tripolymeric, triaxial electrospun systems were seen to be ideal for the support of mesenchymal stem cell growth, as shrinkage of fibers normally found with conventional electrospun systems was minimized. These tripolymeric triaxial electrospun fibers that are biomechanically competent, biocompatible, and capable of dual drug release are designed for regenerative engineering and drug delivery applications.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rodaminas / Tejido Adiposo / Isotiocianatos / Ingeniería de Tejidos / Copolímero de Ácido Poliláctico-Ácido Poliglicólico Límite: Animals Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rodaminas / Tejido Adiposo / Isotiocianatos / Ingeniería de Tejidos / Copolímero de Ácido Poliláctico-Ácido Poliglicólico Límite: Animals Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido