Your browser doesn't support javascript.
loading
High-Performance Ag-Modified Bi0.5Sb1.5Te3 Films for the Flexible Thermoelectric Generator.
Shang, Hongjing; Li, Taiguang; Luo, Dan; Yu, Luo; Zou, Qi; Huang, Daxing; Xiao, Liye; Gu, Hongwei; Ren, Zhifeng; Ding, Fazhu.
Afiliación
  • Shang H; Key Laboratory of Applied Superconductivity , Chinese Academy of Sciences , Beijing 100190 , China.
  • Li T; Institute of Electrical Engineering , Chinese Academy of Sciences , Beijing 100190 , China.
  • Luo D; University of Chinese Academy of Sciences , Beijing 100049 , China.
  • Yu L; Key Laboratory of Applied Superconductivity , Chinese Academy of Sciences , Beijing 100190 , China.
  • Zou Q; Institute of Electrical Engineering , Chinese Academy of Sciences , Beijing 100190 , China.
  • Huang D; University of Chinese Academy of Sciences , Beijing 100049 , China.
  • Xiao L; Department of Physics and TcSUH , University of Houston , Houston , Texas 77204 , United States.
  • Gu H; Department of Physics and TcSUH , University of Houston , Houston , Texas 77204 , United States.
  • Ren Z; College of Physical Science Technology , Central China Normal University , Wuhan 430079 , China.
  • Ding F; Key Laboratory of Applied Superconductivity , Chinese Academy of Sciences , Beijing 100190 , China.
ACS Appl Mater Interfaces ; 12(6): 7358-7365, 2020 Feb 12.
Article en En | MEDLINE | ID: mdl-31967776
ABSTRACT
Bi-Sb-Te-based semiconductors possess the best room-temperature thermoelectric performance, but are restricted for application in the wearable field because of their inherent brittleness, rigidity, and nonscalable manufacturing techniques. Therefore, how to obtain thermoelectric materials with excellent thermoelectric properties and flexibility through the batch production process is a serious challenge. Here, we report the fabrication of flexible p-type thermoelectric Ag-modified Bi0.5Sb1.5Te3 films on flexible substrates using a facile approach. Their optimized power factors are ∼12.4 and ∼14.0 µW cm-1 K-2 at 300 and 420 K, respectively. These high-power factors mainly originate from the optimized carrier transport of the composite system, through which a high level of electrical conductivity is achieved, whereas a remarkably improved Seebeck coefficient is simultaneously obtained. Bending tests demonstrate the excellent flexibility and mechanical durability of the composite films, and their power factors decrease by only about 10% after bending for 650 cycles with a bending radius of 5 mm. A flexible thermoelectric module is designed and constructed using the optimized composite films and displays a power density of ∼1.4 mW cm-2 at a relatively small ΔT of 60 K. This work demonstrates the potential of inorganic thermoelectric materials to be made on flexible/wearable substrates for energy harvesting and management devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: China