Your browser doesn't support javascript.
loading
Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals.
Wesolowska-Andersen, Agata; Zhuo Yu, Grace; Nylander, Vibe; Abaitua, Fernando; Thurner, Matthias; Torres, Jason M; Mahajan, Anubha; Gloyn, Anna L; McCarthy, Mark I.
Afiliación
  • Wesolowska-Andersen A; Wellcome Centre for Human Genetics, Oxford, United Kingdom.
  • Zhuo Yu G; Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.
  • Nylander V; Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.
  • Abaitua F; Wellcome Centre for Human Genetics, Oxford, United Kingdom.
  • Thurner M; Wellcome Centre for Human Genetics, Oxford, United Kingdom.
  • Torres JM; Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.
  • Mahajan A; Wellcome Centre for Human Genetics, Oxford, United Kingdom.
  • Gloyn AL; Wellcome Centre for Human Genetics, Oxford, United Kingdom.
  • McCarthy MI; Wellcome Centre for Human Genetics, Oxford, United Kingdom.
Elife ; 92020 01 27.
Article en En | MEDLINE | ID: mdl-31985400
ABSTRACT
Genome-wide association analyses have uncovered multiple genomic regions associated with T2D, but identification of the causal variants at these remains a challenge. There is growing interest in the potential of deep learning models - which predict epigenome features from DNA sequence - to support inference concerning the regulatory effects of disease-associated variants. Here, we evaluate the advantages of training convolutional neural network (CNN) models on a broad set of epigenomic features collected in a single disease-relevant tissue - pancreatic islets in the case of type 2 diabetes (T2D) - as opposed to models trained on multiple human tissues. We report convergence of CNN-based metrics of regulatory function with conventional approaches to variant prioritization - genetic fine-mapping and regulatory annotation enrichment. We demonstrate that CNN-based analyses can refine association signals at T2D-associated loci and provide experimental validation for one such signal. We anticipate that these approaches will become routine in downstream analyses of GWAS.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Islotes Pancreáticos / Diabetes Mellitus Tipo 2 / Aprendizaje Profundo / Modelos Teóricos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Elife Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Islotes Pancreáticos / Diabetes Mellitus Tipo 2 / Aprendizaje Profundo / Modelos Teóricos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Elife Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido