Your browser doesn't support javascript.
loading
Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation.
Knopf, Julia D; Landscheidt, Nina; Pegg, Cassandra L; Schulz, Benjamin L; Kühnle, Nathalie; Chao, Chao-Wei; Huck, Simon; Lemberg, Marius K.
Afiliación
  • Knopf JD; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
  • Landscheidt N; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
  • Pegg CL; School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
  • Schulz BL; School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
  • Kühnle N; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
  • Chao CW; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
  • Huck S; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
  • Lemberg MK; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany m.lemberg@zmbh.uni-heidelberg.de.
J Cell Sci ; 133(6)2020 03 26.
Article en En | MEDLINE | ID: mdl-32005703
ABSTRACT
The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Degradación Asociada con el Retículo Endoplásmico / Hexosiltransferasas / Proteínas de la Membrana Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Cell Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Degradación Asociada con el Retículo Endoplásmico / Hexosiltransferasas / Proteínas de la Membrana Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Cell Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania
...