Your browser doesn't support javascript.
loading
Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer.
Zhang, Chi; Coasne, Benoit; Guyer, Robert; Derome, Dominique; Carmeliet, Jan.
Afiliación
  • Zhang C; 1Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich, 8093 Zurich, Switzerland.
  • Coasne B; 2Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland.
  • Guyer R; 3CNRS, LIPhy, Univ. Grenoble Alpes, 38000 Grenoble, France.
  • Derome D; 4Department of Physics, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557 USA.
  • Carmeliet J; 2Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland.
Cellulose (Lond) ; 27(1): 89-99, 2020.
Article en En | MEDLINE | ID: mdl-32009745
ABSTRACT
The use of natural sustainable resources such as wood in green industrial processes is currently limited by our poor understanding of the impact of moisture on their thermodynamic and mechanical behaviors. Here, a molecular dynamics approach is used to investigate the physical response of a typical hydrophilic biopolymer in softwood hemicellulose-xylan-when subjected to moisture adsorption. A unique moisture-induced crossover is found in the thermodynamic and mechanical properties of this prototypical biopolymer with many quantities such as the heat of adsorption, heat capacity, thermal expansion and elastic moduli exhibiting a marked evolution change for a moisture content about 30 wt%. By investigating the microscopic structure of the confined water molecules and the polymer-water interfacial area, the molecular mechanism responsible for this crossover is shown to correspond to the formation of a double-layer adsorbed film along the amorphous polymeric chains. In addition to this moisture-induced crossover, many properties of the hydrated biopolymer are found to obey simple material models.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cellulose (Lond) Año: 2020 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cellulose (Lond) Año: 2020 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM