Your browser doesn't support javascript.
loading
The human Golgi protein TMEM165 transports calcium and manganese in yeast and bacterial cells.
Stribny, Jiri; Thines, Louise; Deschamps, Antoine; Goffin, Philippe; Morsomme, Pierre.
Afiliación
  • Stribny J; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
  • Thines L; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
  • Deschamps A; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
  • Goffin P; Cellular and Molecular Microbiology Lab, Université Libre de Bruxelles, B-6041 Gosselies, Belgium.
  • Morsomme P; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium pierre.morsomme@uclouvain.be.
J Biol Chem ; 295(12): 3865-3874, 2020 03 20.
Article en En | MEDLINE | ID: mdl-32047108
ABSTRACT
Cases of congenital disorders of glycosylation (CDG) have been associated with specific mutations within the gene encoding the human Golgi TMEM165 (transmembrane protein 165), belonging to UPF0016 (uncharacterized protein family 0016), a family of secondary ion transporters. To date, members of this family have been reported to be involved in calcium, manganese, and pH homeostases. Although it has been suggested that TMEM165 has cation transport activity, direct evidence for its Ca2+- and Mn2+-transporting activities is still lacking. Here, we functionally characterized human TMEM165 by heterologously expressing it in budding yeast (Saccharomyces cerevisiae) and in the bacterium Lactococcus lactis Protein production in these two microbial hosts was enhanced by codon optimization and truncation of the putatively autoregulatory N terminus of TMEM165. We show that TMEM165 expression in a yeast strain devoid of Golgi Ca2+ and Mn2+ transporters abrogates Ca2+- and Mn2+-induced growth defects, excessive Mn2+ accumulation in the cell, and glycosylation defects. Using bacterial cells loaded with the fluorescent Fura-2 probe, we further obtained direct biochemical evidence that TMEM165 mediates Ca2+ and Mn2+ influxes. We also used the yeast and bacterial systems to evaluate the impact of four disease-causing missense mutations identified in individuals with TMEM165-associated CDG. We found that a mutation leading to a E108G substitution within the conserved UPF0016 family motif significantly reduces TMEM165 activity. These results indicate that TMEM165 can transport Ca2+ and Mn2+, which are both required for proper protein glycosylation in cells. Our work also provides tools to better understand the pathogenicity of CDG-associated TMEM165 mutations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Calcio / Lactococcus lactis / Antiportadores / Proteínas de Transporte de Catión / Aparato de Golgi / Manganeso Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Calcio / Lactococcus lactis / Antiportadores / Proteínas de Transporte de Catión / Aparato de Golgi / Manganeso Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article País de afiliación: Bélgica