Your browser doesn't support javascript.
loading
Enhanced Electrosynthetic Hydrogen Evolution by Hydrogenases Embedded in a Redox-Active Hydrogel.
Ruth, John C; Milton, Ross D; Gu, Wenyu; Spormann, Alfred M.
Afiliación
  • Ruth JC; Department of Chemical Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.
  • Milton RD; Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.
  • Gu W; Current address: Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland.
  • Spormann AM; Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.
Chemistry ; 26(32): 7323-7329, 2020 Jun 05.
Article en En | MEDLINE | ID: mdl-32074397
ABSTRACT
Molecular hydrogen is a major high-energy carrier for future energy technologies, if produced from renewable electrical energy. Hydrogenase enzymes offer a pathway for bioelectrochemically producing hydrogen that is advantageous over traditional platforms for hydrogen production because of low overpotentials and ambient operating temperature and pressure. However, electron delivery from the electrode surface to the enzyme's active site is often rate-limiting. Here, it is shown that three different hydrogenases from Clostridium pasteurianum and Methanococcus maripaludis, when immobilized at a cathode in a cobaltocene-functionalized polyallylamine (Cc-PAA) redox polymer, mediate rapid and efficient hydrogen evolution. Furthermore, it is shown that Cc-PAA-mediated hydrogenases can operate at high faradaic efficiency (80-100 %) and low apparent overpotential (-0.578 to -0.593 V vs. SHE). Specific activities of these hydrogenases in the electrosynthetic Cc-PAA assay were comparable to their respective activities in traditional methyl viologen assays, indicating that Cc-PAA mediates electron transfer at high rates, to most of the embedded enzymes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Paraquat / Polímeros / Hidrogeles / Hidrógeno / Hidrogenasas Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Paraquat / Polímeros / Hidrogeles / Hidrógeno / Hidrogenasas Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos