Your browser doesn't support javascript.
loading
Dictionary learning in Fourier-transform scanning tunneling spectroscopy.
Cheung, Sky C; Shin, John Y; Lau, Yenson; Chen, Zhengyu; Sun, Ju; Zhang, Yuqian; Müller, Marvin A; Eremin, Ilya M; Wright, John N; Pasupathy, Abhay N.
Afiliación
  • Cheung SC; Department of Physics, Columbia University, New York, NY, 10027, USA.
  • Shin JY; Department of Physics, Columbia University, New York, NY, 10027, USA.
  • Lau Y; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
  • Chen Z; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
  • Sun J; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
  • Zhang Y; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
  • Müller MA; Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany.
  • Eremin IM; Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany.
  • Wright JN; National University of Science and Technology MISiS, 119049, Moscow, Russian Federation.
  • Pasupathy AN; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA. johnwright@ee.columbia.edu.
Nat Commun ; 11(1): 1081, 2020 Feb 26.
Article en En | MEDLINE | ID: mdl-32102995
ABSTRACT
Modern high-resolution microscopes are commonly used to study specimens that have dense and aperiodic spatial structure. Extracting meaningful information from images obtained from such microscopes remains a formidable challenge. Fourier analysis is commonly used to analyze the structure of such images. However, the Fourier transform fundamentally suffers from severe phase noise when applied to aperiodic images. Here, we report the development of an algorithm based on nonconvex optimization that directly uncovers the fundamental motifs present in a real-space image. Apart from being quantitatively superior to traditional Fourier analysis, we show that this algorithm also uncovers phase sensitive information about the underlying motif structure. We demonstrate its usefulness by studying scanning tunneling microscopy images of a Co-doped iron arsenide superconductor and prove that the application of the algorithm allows for the complete recovery of quasiparticle interference in this material.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos