Your browser doesn't support javascript.
loading
Design and Construction of the Gadolinium Oxide Nanorod-Embedded Graphene Aerogel: A Potential Application for Electrochemical Detection of Postharvest Fungicide.
Kokulnathan, Thangavelu; Chen, Shen-Ming.
Afiliación
  • Kokulnathan T; Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
  • Chen SM; Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
ACS Appl Mater Interfaces ; 12(14): 16216-16226, 2020 Apr 08.
Article en En | MEDLINE | ID: mdl-32149501
ABSTRACT
The rapid development of electrochemical sensors holds great promise to serve as next generation point-of-care safety devices. However, the practical performances of electrochemical sensors are cruelly limited by stability, selectivity, and sensitivity. These issues have been well addressed by introducing rational designs into the modified electrode for achieving the required performances. Herein, we demonstrate the gadolinium oxide nanorods embedded on the graphene aerogel (GdO NRs/GA) for a highly selective electrochemical detection of carbendazim (CDM). The GdO NRs/GA nanocomposite was characterized using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission gun scanning electron microscopy, transmission electron microscopy with elemental mapping, and energy-dispersive spectrometry. The GdO NRs/GA-modified electrode shows a much improved electrochemical performance compared to other electrodes. Interestingly, the GdO NRs are strongly anchored in the GA matrix, which provides a more sufficient pathway for the rapid electron and ion transportation. On the basis of these findings, our proposed sensor achieves a wide detection range from 0.01 to 75 µM with a correlation coefficient of 0.996 and a low detection limit of 3.0 nM. Most markedly, the real-time monitoring of the proposed electrochemical sensor was proved by the successful determination of CDM in environmental samples. Our research work has opened a novel way to the rationale for the construction of highly efficient practical electrochemical sensors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bencimidazoles / Carbamatos / Técnicas Biosensibles / Nanotubos / Fungicidas Industriales Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bencimidazoles / Carbamatos / Técnicas Biosensibles / Nanotubos / Fungicidas Industriales Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Taiwán