Photopolymerized Starchstarch Nanoparticle (SNP) network hydrogels.
Carbohydr Polym
; 236: 115998, 2020 May 15.
Article
en En
| MEDLINE
| ID: mdl-32172832
Starch is an attractive biomaterial given its low cost and high protein repellency, but its use in forming functional hydrogels is limited by its high viscosity and crystallinity. Herein, we demonstrate the use of fully amorphous starch nanoparticles (SNPs) as functional hydrogel building blocks that overcome these challenges. Methacrylation of SNPs enables hydrogel formation via photopolymerization, with the low viscosity of SNPs enabling facile preparation of pre-gel suspensions of up to 35â¯wt% SNPs relative to <10â¯wt% with linear starch. Small angle neutron scattering indicates a significantly different microstructure in SNP-based hydrogels compared to linear starch-based hydrogels due to the balance between inter- and intra-particle crosslinks, consistent with SNPs forming denser and stiffer hydrogels. Functionalized SNPs are highly cytocompatible at degree of substitution values <0.25 and, once gelled, can effectively repel cell adhesion. The physicochemical versatility and biological functionality of SNP-based hydrogels offer potential in various applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Carbohydr Polym
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Reino Unido