Microvascular Mimetics for the Study of Leukocyte-Endothelial Interactions.
Cell Mol Bioeng
; 13(2): 125-139, 2020 Apr.
Article
en En
| MEDLINE
| ID: mdl-32175026
INTRODUCTION: The pathophysiological increase in microvascular permeability plays a well-known role in the onset and progression of diseases like sepsis and atherosclerosis. However, how interactions between neutrophils and the endothelium alter vessel permeability is often debated. METHODS: In this study, we introduce a microfluidic, silicon-membrane enabled vascular mimetic (µSiM-MVM) for investigating the role of neutrophils in inflammation-associated microvascular permeability. In utilizing optically transparent silicon nanomembrane technology, we build on previous microvascular models by enabling in situ observations of neutrophil-endothelium interactions. To evaluate the effects of neutrophil transmigration on microvascular model permeability, we established and validated electrical (transendothelial electrical resistance and impedance) and small molecule permeability assays that allow for the in situ quantification of temporal changes in endothelium junctional integrity. RESULTS: Analysis of neutrophil-expressed ß1 integrins revealed a prominent role of neutrophil transmigration and basement membrane interactions in increased microvascular permeability. By utilizing blocking antibodies specific to the ß1 subunit, we found that the observed increase in microvascular permeability due to neutrophil transmigration is constrained when neutrophil-basement membrane interactions are blocked. Having demonstrated the value of in situ measurements of small molecule permeability, we then developed and validated a quantitative framework that can be used to interpret barrier permeability for comparisons to conventional Transwell™ values. CONCLUSIONS: Overall, our results demonstrate the potential of the µSiM-MVM in elucidating mechanisms involved in the pathogenesis of inflammatory disease, and provide evidence for a role for neutrophils in inflammation-associated endothelial barrier disruption.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Cell Mol Bioeng
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Estados Unidos