Your browser doesn't support javascript.
loading
A Redox-Robust Ceramic Anode-Supported Low-Temperature Solid Oxide Fuel Cell.
Hussain, A Mohammed; Huang, Yi-Lin; Pan, Ke-Ji; Robinson, Ian A; Wang, Xizheng; Wachsman, Eric D.
Afiliación
  • Hussain AM; Maryland Energy Innovation Institute, University of Maryland, College Park, Maryland 20742, United States.
  • Huang YL; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742,United States.
  • Pan KJ; Nissan Technical Center North America, Advanced Materials and Technology Research, Farmington Hills, Michigan 48331, United States.
  • Robinson IA; Maryland Energy Innovation Institute, University of Maryland, College Park, Maryland 20742, United States.
  • Wang X; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742,United States.
  • Wachsman ED; Maryland Energy Innovation Institute, University of Maryland, College Park, Maryland 20742, United States.
ACS Appl Mater Interfaces ; 12(16): 18526-18532, 2020 Apr 22.
Article en En | MEDLINE | ID: mdl-32195575
A critical factor hampering the deployment of fuel-flexible, low-temperature solid oxide fuel cells (LT-SOFCs) is the long-term stability of the electrode in different gas environments. Specifically, for state-of-the-art Ni-cermet anodes, reduction/oxidation (redox) cycles during fuel-rich and fuel-starved conditions cause a huge volume change, eventually leading to cell failure. Here, we report a robust redox-stable SrFe0.2Co0.4Mo0.4O3 (SFCM)/Ce0.9Gd0.1O2 ceramic anode-supported LT-SOFC with high performance and remarkable redox stability. The anode-supported configuration tackles the high ohmic loss associated with conventional ceramic anodes, achieving a high open circuit voltage of ∼0.9 V and a peak power density of 500 mW/cm2 at 600 °C in hydrogen. In addition, ceramic anode-supported SOFCs are stable over tens of redox cycles under harsh operating conditions. Our study reveals that oxygen nonstoichiometry of SFCM compensates for the dimensional changes that occur during redox cycles. Our results demonstrate the potential of all ceramic cells for the next generation of LT-SOFCs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos