Your browser doesn't support javascript.
loading
IMPROVED EMPIRICAL LIKELIHOOD FUNCTION BASED ON NORMALIZATION-DEPENDENT REPLICATE MEASUREMENTS.
Miller, Guthrie; Klumpp, John; Poudel, Deepesh.
Afiliación
  • Miller G; Santa Fe, NM, USA.
  • Klumpp J; Radiation Protection Services, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Poudel D; Radiation Protection Services, Los Alamos National Laboratory, Los Alamos, NM, USA.
Radiat Prot Dosimetry ; 189(2): 149-156, 2020 Jul 13.
Article en En | MEDLINE | ID: mdl-32222771
Based on $n$ replicate measurements that require known normalization factors and assuming an underlying normal distribution for individual measurements but with unknown standard deviation, a combined likelihood function is derived that takes the form of a Student's $t$-distribution with $\nu = n-1$ degrees of freedom and $t=(\psi -\overline{Y})/s$, where $\psi $ is the true value of the measurement quantity calculated from the forward model, and $\overline{Y}$ and $s$ are average and standard error of the mean obtained from the $n$ measurements defined with weighting proportional to the inverse of the normalization factor squared. Assuming an underlying triangle distribution rather than a normal distribution does not produce a large change for six replicates. Examples of replicate data from an animal study and sequential occupational urine and fecal monitoring are given. The use of the empirical likelihood function in data modeling is discussed.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Funciones de Verosimilitud Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Radiat Prot Dosimetry Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Funciones de Verosimilitud Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Radiat Prot Dosimetry Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido