Your browser doesn't support javascript.
loading
Spin-cooling of the motion of a trapped diamond.
Delord, T; Huillery, P; Nicolas, L; Hétet, G.
Afiliación
  • Delord T; Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
  • Huillery P; Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
  • Nicolas L; Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
  • Hétet G; Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France. gabriel.hetet@ens.fr.
Nature ; 580(7801): 56-59, 2020 04.
Article en En | MEDLINE | ID: mdl-32238930
ABSTRACT
Observing and controlling macroscopic quantum systems has long been a driving force in quantum physics research. In particular, strong coupling between individual quantum systems and mechanical oscillators is being actively studied1-3. Whereas both read-out of mechanical motion using coherent control of spin systems4-9 and single-spin read-out using pristine oscillators have been demonstrated10,11, temperature control of the motion of a macroscopic object using long-lived electronic spins has not been reported. Here we observe a spin-dependent torque and spin-cooling of the motion of a trapped microdiamond. Using a combination of microwave and laser excitation enables the spins of nitrogen-vacancy centres to act on the diamond orientation and to cool the diamond libration via a dynamical back-action. Furthermore, by driving the system in the nonlinear regime, we demonstrate bistability and self-sustained coherent oscillations stimulated by spin-mechanical coupling, which offers the prospect of spin-driven generation of non-classical states of motion. Such a levitating diamond-held in position by electric field gradients   under vacuum-can operate as a 'compass' with controlled dissipation and has potential use in high-precision torque sensing12-14, emulation of the spin-boson problem15 and probing of quantum phase transitions16. In the single-spin limit17 and using ultrapure nanoscale diamonds, it could allow quantum non-demolition read-out of the spin of nitrogen-vacancy centres at ambient conditions, deterministic entanglement between distant individual spins18 and matter-wave interferometry16,19,20.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2020 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2020 Tipo del documento: Article País de afiliación: Francia