Your browser doesn't support javascript.
loading
Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway.
Wu, Lei; Bai, Yuli; Wang, Lingling; Liu, Xi; Zhou, Rui; Li, Lian; Wu, Ruinan; Zhang, Zhirong; Zhu, Xi; Huang, Yuan.
Afiliación
  • Wu L; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Bai Y; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Wang L; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Liu X; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Zhou R; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Li L; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Wu R; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Zhang Z; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
  • Zhu X; Shanghai InnoStar Biotech Co., LTD. (National Shanghai Center for New Drug Safety Evaluation and Research), 199 Guoshoujing Road, Pudong New Area, Shanghai, PR China. Electronic address: zhuxisid@163.com.
  • Huang Y; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China. Electronic address: huangyuan0@163.com.
J Control Release ; 323: 151-160, 2020 07 10.
Article en En | MEDLINE | ID: mdl-32277961
The epithelium is a formidable barrier to the absorption of orally delivered nano-vehicles. Here, by exploring a nutrient-absorption pathway, a self-amplified nanoplatform was developed to promote apical-to-basolateral transcytosis across the epithelium. The nanoplatform consisted of fructose-modified polyethylene glycol coated nanoparticles (Fru-PEG NPs) and a sweetener, acesulfame potassium (AceK) in combination. Compared with regular PEGylated nanoparticles, the combination exhibited a 3.9-fold increase of absorption following oral gavage in mice and an 8.8-fold increase of transepithelial transport in vitro. When encapsulated with insulin, the combination regimen elicited a stronger hypoglycemic effect, with a pharmacological bioavailability of 18.56%, which was 3.2-fold higher than that of PEG NPs. We demonstrated that a large proportion of Fru-PEG NPs underwent internalization and basolateral exocytosis via a glucose transporter type 2 (GLUT2)-dependent process, which is an important fructose assimilation pathway. Notably, co-administered AceK could prime the epithelial cells with increased apical distribution of GLUT2, thus amplifying this unidirectional transcytosis of nanoparticles. This work is the first proof-of-concept study of manipulating and amplifying a nutrient-absorption pathway to facilitate the unidirectional trans-epithelial transport of orally administered nano-delivery vehicles.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Transcitosis Límite: Animals / Humans Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Transcitosis Límite: Animals / Humans Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos