Your browser doesn't support javascript.
loading
Realization of an Ultrasensitive and Highly Selective OFET NO2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin-MOF.
Yuvaraja, Saravanan; Surya, Sandeep G; Chernikova, Valeriya; Vijjapu, Mani Teja; Shekhah, Osama; Bhatt, Prashant M; Chandra, Suman; Eddaoudi, Mohamed; Salama, Khaled N.
Afiliación
  • Yuvaraja S; Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  • Surya SG; Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  • Chernikova V; Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
  • Vijjapu MT; Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
  • Shekhah O; Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
  • Bhatt PM; Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
  • Chandra S; Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
  • Eddaoudi M; Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
  • Salama KN; Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
ACS Appl Mater Interfaces ; 12(16): 18748-18760, 2020 Apr 22.
Article en En | MEDLINE | ID: mdl-32281789
ABSTRACT
Organic field-effect transistors (OFETs) are emerging as competitive candidates for gas sensing applications due to the ease of their fabrication process combined with the ability to readily fine-tune the properties of organic semiconductors. Nevertheless, some key challenges remain to be addressed, such as material degradation, low sensitivity, and poor selectivity toward toxic gases. Appropriately, a heterojunction combination of different sensing layers with multifunctional capabilities offers great potential to overcome these problems. Here, a novel and highly sensitive receptor layer is proposed encompassing a porous 3D metal-organic framework (MOF) based on isostructural-fluorinated MOFs acting as an NO2 specific preconcentrator, on the surface of a stable and ultrathin PDVT-10 organic semiconductor on an OFET platform. Here, with this proposed combination we have unveiled an unprecedented 700% increase in sensitivity toward NO2 analyte in contrast to the pristine PDVT-10. The resultant combination for this OFET device exhibits a remarkable lowest detection limit of 8.25 ppb, a sensitivity of 680 nA/ppb, and good stability over a period of 6 months under normal laboratory conditions. Further, a negligible response (4.232 nA/%RH) toward humidity in the range of 5%-90% relative humidity was demonstrated using this combination. Markedly, the obtained results support the use of the proposed novel strategy to achieve an excellent sensing performance with an OFET platform.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article