Your browser doesn't support javascript.
loading
Dynamic coupling of whole-brain neuronal and neurotransmitter systems.
Kringelbach, Morten L; Cruzat, Josephine; Cabral, Joana; Knudsen, Gitte Moos; Carhart-Harris, Robin; Whybrow, Peter C; Logothetis, Nikos K; Deco, Gustavo.
Afiliación
  • Kringelbach ML; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom; morten.kringelbach@psych.ox.ac.uk nklmpg@stanford.edu gustavo.deco@upf.edu.
  • Cruzat J; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.
  • Cabral J; Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal.
  • Knudsen GM; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX1 2JD, United Kingdom.
  • Carhart-Harris R; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain.
  • Whybrow PC; Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.
  • Logothetis NK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom.
  • Deco G; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.
Proc Natl Acad Sci U S A ; 117(17): 9566-9576, 2020 04 28.
Article en En | MEDLINE | ID: mdl-32284420
ABSTRACT
Remarkable progress has come from whole-brain models linking anatomy and function. Paradoxically, it is not clear how a neuronal dynamical system running in the fixed human anatomical connectome can give rise to the rich changes in the functional repertoire associated with human brain function, which is impossible to explain through long-term plasticity. Neuromodulation evolved to allow for such flexibility by dynamically updating the effectivity of the fixed anatomical connectivity. Here, we introduce a theoretical framework modeling the dynamical mutual coupling between the neuronal and neurotransmitter systems. We demonstrate that this framework is crucial to advance our understanding of whole-brain dynamics by bidirectional coupling of the two systems through combining multimodal neuroimaging data (diffusion magnetic resonance imaging [dMRI], functional magnetic resonance imaging [fMRI], and positron electron tomography [PET]) to explain the functional effects of specific serotoninergic receptor (5-HT2AR) stimulation with psilocybin in healthy humans. This advance provides an understanding of why psilocybin is showing considerable promise as a therapeutic intervention for neuropsychiatric disorders including depression, anxiety, and addiction. Overall, these insights demonstrate that the whole-brain mutual coupling between the neuronal and the neurotransmission systems is essential for understanding the remarkable flexibility of human brain function despite having to rely on fixed anatomical connectivity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Encéfalo / Neurotransmisores / Modelos Biológicos / Neuronas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Encéfalo / Neurotransmisores / Modelos Biológicos / Neuronas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article