Your browser doesn't support javascript.
loading
Bio-assisted synthesized Pd nanoparticles supported on ionic liquid decorated magnetic halloysite: an efficient catalyst for degradation of dyes.
Sadjadi, Samahe; Mohammadi, Pourya; Heravi, Majid.
Afiliación
  • Sadjadi S; Faculty of Petrochemicals, Iran polymer and Petrochemicals Institute, 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, postal cod; 14977-13115, PO Box 14975-112, Tehran, Iran. s.sadjadi@ippi.ac.ir.
  • Mohammadi P; Department of Chemistry, School of Science, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran.
  • Heravi M; Department of Chemistry, School of Science, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran. m.heravi@alzahra.ac.ir.
Sci Rep ; 10(1): 6535, 2020 04 16.
Article en En | MEDLINE | ID: mdl-32300152
ABSTRACT
Using natural materials, i.e. halloysite nanoclay that is a biocompatible naturally occurring clay and Heracleum persicum extract that can serve as a green reducing agent, a novel magnetic catalyst, Fe3O4/Hal-Mel-TEA(IL)-Pd, has been designed and fabricated. To prepare the catalyst, halloysite was first magnetized (magnetic particles with mean diameter of 13.06 ± 3.1 nm) and then surface functionalized with melamine, 1,4 dibromobutane and triethanolamine to provide ionic liquid on the halloysite surface (5 wt%). The latter was then used as a support to immobilize Pd nanoparticles that were reduced by Heracleum persicum extract. The characterization of the catalyst established that the loading of Pd in Fe3O4/Hal-Mel-TEA(IL)-Pd was very low (0.93 wt%) and its specific surface area was 63 m2g-1. Moreover, the catalyst showed magnetic property (Ms = 19.75 emu g-1) and could be magnetically separated from the reaction. The catalytic performance of the magnetic catalyst for reductive degradation of methyl orange and rhodamine B in the presence of NaBH4 in aqueous media was investigated. The activation energy, enthalpy, and entropy for the reduction of methyl orange were estimated as 42.02 kJ mol-1, 39.40 kJ mol-1, and -139.06 J mol-1 K-1, respectively. These values for rhodamine B were calculated as 39.97 kJ mol-1, 34.33 kJ mol-1, and -155.18 Jmol-1K-1, respectively. Notably, Fe3O4/Hal-Mel-TEA(IL)-Pd could be reused for eight reaction runs with negligible loss of the catalytic activity (~3%) and Pd leaching (0.01 wt% of the initial loading).

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Irán