Your browser doesn't support javascript.
loading
Swelling Cholesteric Liquid Crystal Shells to Direct the Assembly of Particles at the Interface.
Tran, Lisa; Bishop, Kyle J M.
Afiliación
  • Tran L; Department of Chemical Engineering, Columbia University, New York New York 10027, United States.
  • Bishop KJM; Department of Chemical Engineering, Columbia University, New York New York 10027, United States.
ACS Nano ; 14(5): 5459-5467, 2020 May 26.
Article en En | MEDLINE | ID: mdl-32302088
ABSTRACT
Cholesteric liquid crystals can exhibit spatial patterns in molecular alignment at interfaces that can be exploited for particle assembly. These patterns emerge from the competition between bulk and surface energies, tunable with the system geometry. In this work, we use the osmotic swelling of cholesteric double emulsions to assemble colloidal particles through a pathway-dependent process. Particles can be repositioned from a surface-mediated to an elasticity-mediated state through dynamically thinning the cholesteric shell at a rate comparable to that of colloidal adsorption. By tuning the balance between surface and bulk energies with the system geometry, colloidal assemblies on the cholesteric interface can be molded by the underlying elastic field to form linear aggregates. The transition of adsorbed particles from surface regions with homeotropic anchoring to defect regions is accompanied by a reduction in particle mobility. The arrested assemblies subsequently map out and stabilize topological defects. These results demonstrate the kinetic arrest of interfacial particles within definable patterns by regulating the energetic frustration within cholesterics. This work highlights the importance of kinetic pathways for particle assembly in liquid crystals, of relevance to optical and energy applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos