Your browser doesn't support javascript.
loading
Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis.
Hsiao, Chiaowen Joyce; Tung, PoYuan; Blischak, John D; Burnett, Jonathan E; Barr, Kenneth A; Dey, Kushal K; Stephens, Matthew; Gilad, Yoav.
Afiliación
  • Hsiao CJ; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.
  • Tung P; Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
  • Blischak JD; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.
  • Burnett JE; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.
  • Barr KA; Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
  • Dey KK; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
  • Stephens M; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.
  • Gilad Y; Department of Statistics, University of Chicago, Chicago, Illinois 60637, USA.
Genome Res ; 30(4): 611-621, 2020 04.
Article en En | MEDLINE | ID: mdl-32312741
Cellular heterogeneity in gene expression is driven by cellular processes, such as cell cycle and cell-type identity, and cellular environment such as spatial location. The cell cycle, in particular, is thought to be a key driver of cell-to-cell heterogeneity in gene expression, even in otherwise homogeneous cell populations. Recent advances in single-cell RNA-sequencing (scRNA-seq) facilitate detailed characterization of gene expression heterogeneity and can thus shed new light on the processes driving heterogeneity. Here, we combined fluorescence imaging with scRNA-seq to measure cell cycle phase and gene expression levels in human induced pluripotent stem cells (iPSCs). By using these data, we developed a novel approach to characterize cell cycle progression. Although standard methods assign cells to discrete cell cycle stages, our method goes beyond this and quantifies cell cycle progression on a continuum. We found that, on average, scRNA-seq data from only five genes predicted a cell's position on the cell cycle continuum to within 14% of the entire cycle and that using more genes did not improve this accuracy. Our data and predictor of cell cycle phase can directly help future studies to account for cell cycle-related heterogeneity in iPSCs. Our results and methods also provide a foundation for future work to characterize the effects of the cell cycle on expression heterogeneity in other cell types.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ciclo Celular / Análisis de Secuencia de ARN / Biología Computacional / Análisis de la Célula Individual / Secuenciación de Nucleótidos de Alto Rendimiento Límite: Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ciclo Celular / Análisis de Secuencia de ARN / Biología Computacional / Análisis de la Célula Individual / Secuenciación de Nucleótidos de Alto Rendimiento Límite: Humans Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos