Your browser doesn't support javascript.
loading
Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality.
Alcañiz Raya, Mariano; Chicchi Giglioli, Irene Alice; Marín-Morales, Javier; Higuera-Trujillo, Juan L; Olmos, Elena; Minissi, Maria E; Teruel Garcia, Gonzalo; Sirera, Marian; Abad, Luis.
Afiliación
  • Alcañiz Raya M; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.
  • Chicchi Giglioli IA; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.
  • Marín-Morales J; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.
  • Higuera-Trujillo JL; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.
  • Olmos E; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.
  • Minissi ME; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.
  • Teruel Garcia G; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.
  • Sirera M; Red Cenit, Centros de Desarrollo Cognitivo, Valencia, Spain.
  • Abad L; Red Cenit, Centros de Desarrollo Cognitivo, Valencia, Spain.
Front Hum Neurosci ; 14: 90, 2020.
Article en En | MEDLINE | ID: mdl-32317949
OBJECTIVE: Sensory processing is the ability to capture, elaborate, and integrate information through the five senses and is impaired in over 90% of children with autism spectrum disorder (ASD). The ASD population shows hyper-hypo sensitiveness to sensory stimuli that can generate alteration in information processing, affecting cognitive and social responses to daily life situations. Structured and semi-structured interviews are generally used for ASD assessment, and the evaluation relies on the examiner's subjectivity and expertise, which can lead to misleading outcomes. Recently, there has been a growing need for more objective, reliable, and valid diagnostic measures, such as biomarkers, to distinguish typical from atypical functioning and to reliably track the progression of the illness, helping to diagnose ASD. Implicit measures and ecological valid settings have been showing high accuracy on predicting outcomes and correctly classifying populations in categories. METHODS: Two experiments investigated whether sensory processing can discriminate between ASD and typical development (TD) populations using electrodermal activity (EDA) in two multimodal virtual environments (VE): forest VE and city VE. In the first experiment, 24 children with ASD diagnosis and 30 TDs participated in both virtual experiences, and changes in EDA have been recorded before and during the presentation of visual, auditive, and olfactive stimuli. In the second experiment, 40 children have been added to test the model of experiment 1. RESULTS: The first exploratory results on EDA comparison models showed that the integration of visual, auditive, and olfactive stimuli in the forest environment provided higher accuracy (90.3%) on sensory dysfunction discrimination than specific stimuli. In the second experiment, 92 subjects experienced the forest VE, and results on 72 subjects showed that stimuli integration achieved an accuracy of 83.33%. The final confirmatory test set (n = 20) achieved 85% accuracy, simulating a real application of the models. Further relevant result concerns the visual stimuli condition in the first experiment, which achieved 84.6% of accuracy in recognizing ASD sensory dysfunction. CONCLUSION: According to our studies' results, implicit measures, such as EDA, and ecological valid settings can represent valid quantitative methods, along with traditional assessment measures, to classify ASD population, enhancing knowledge on the development of relevant specific treatments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: Front Hum Neurosci Año: 2020 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Qualitative_research Idioma: En Revista: Front Hum Neurosci Año: 2020 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza