Your browser doesn't support javascript.
loading
Dynamical System Modeling of Self-Regulated Systems Undergoing Multiple Excitations: First Order Differential Equation Approach.
Mongin, Denis; Caparros, Adriana Uribe; Gateau, Julien; Gencer, Baris; Alvero-Cruz, Jose Ramon; Cheval, Boris; Cullati, Stéphane; Courvoisier, Delphine S.
Afiliación
  • Mongin D; Quality of Care Division, Geneva University Hospitals.
  • Caparros AU; Department of General Internal Medicine, Rehabilitation and Geriatrics, University of Geneva.
  • Gateau J; Department of General Internal Medicine, Rehabilitation and Geriatrics, University of Geneva.
  • Gencer B; Galatea Laboratory, EPFL Lausanne.
  • Alvero-Cruz JR; Cardiology Division, Geneva University Hospitals.
  • Cheval B; Department of Human physiology, histology, pathological anatomy and physical education, Malaga University, Andalucía Tech.
  • Cullati S; Quality of Care Division, Geneva University Hospitals.
  • Courvoisier DS; Department of General Internal Medicine, Rehabilitation and Geriatrics, University of Geneva.
Multivariate Behav Res ; 56(4): 649-668, 2021.
Article en En | MEDLINE | ID: mdl-32363935
ABSTRACT
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of a signal (e.g., heart rate) before, during, and after excitations taking the system out of its equilibrium (e.g., physical effort during cardiac stress testing). Such approach can be applied to a broad range of outcomes such as physiological processes in medicine and psychosocial processes in social sciences, and it allows to extract simple characteristics of the signal studied. The model is based on a first order linear differential equation with constant coefficients defined by three main parameters corresponding to the initial equilibrium value, the dynamic characteristic time, and the reaction to the excitation. Assuming the presence of interindividual variability (random effects) on these three parameters, we propose a two-step procedure to estimate them. We then compare the results of this analysis to several other estimation procedures in a simulation study that clarifies under which conditions parameters are accurately estimated. Finally, applications of this model are illustrated using cardiology data recorded during effort tests.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador Tipo de estudio: Prognostic_studies Idioma: En Revista: Multivariate Behav Res Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador Tipo de estudio: Prognostic_studies Idioma: En Revista: Multivariate Behav Res Año: 2021 Tipo del documento: Article
...