Your browser doesn't support javascript.
loading
Bone Scaffolds Based on Degradable Vaterite/PEG-Composite Microgels.
Stengelin, Elena; Kuzmina, Alena; Beltramo, Guillermo L; Koziol, Martha F; Besch, Laura; Schröder, Romina; Unger, Ronald E; Tremel, Wolfgang; Seiffert, Sebastian.
Afiliación
  • Stengelin E; Johannes Gutenberg University Mainz, Department of Chemistry, Mainz, D-55128, Germany.
  • Kuzmina A; Johannes Gutenberg University Mainz, Department of Chemistry, Mainz, D-55128, Germany.
  • Beltramo GL; Institute of Biological Information Processing 2 (IBI-2), Jülich Forschungszentrum GmbH, Jülich, D-52428, Germany.
  • Koziol MF; Johannes Gutenberg University Mainz, Department of Chemistry, Mainz, D-55128, Germany.
  • Besch L; Johannes Gutenberg University Mainz, Department of Chemistry, Mainz, D-55128, Germany.
  • Schröder R; Johannes Gutenberg University Mainz, Department of Chemistry, Mainz, D-55128, Germany.
  • Unger RE; Johannes Gutenberg University Mainz, Institute of Pathology, Mainz, D-55128, Germany.
  • Tremel W; Johannes Gutenberg University Mainz, Department of Chemistry, Mainz, D-55128, Germany.
  • Seiffert S; Johannes Gutenberg University Mainz, Department of Chemistry, Mainz, D-55128, Germany.
Adv Healthc Mater ; 9(11): e1901820, 2020 06.
Article en En | MEDLINE | ID: mdl-32378355
ABSTRACT
Vaterite, a metastable modification of calcium carbonate, embedded in a flexible microgel packaging with adjustable mechanical properties, functionality, and biocompatibility, provides a powerful scaffolding for bone tissue regeneration, as it is easily convertible to bone-like hydroxyapatite (HA). In this study, the synthesis and physical analysis of a packaging material to encapsulate vaterite particles and osteoblast cells into monodisperse, sub-millimeter-sized microgels, is described whereby a systematic approach is used to tailor the microgel properties. The size and shape of the microgels is controlled via droplet-based microfluidics. Key requirements for the polymer system, such as absence of cytotoxicity as well as biocompatibility and biodegradability, are accomplished with functionalized poly(ethylene glycol) (PEG), which reacts in a cytocompatible thiol-ene Michael addition. On a mesoscopic level, the microgel stiffness and gelation times are adjusted to obtain high cellular viabilities. The co-encapsulation of living cells provides i) an in vitro platform for the study of cellular metabolic processes which can be applied to bone formation and ii) an in vitro foundation for novel tissue-regenerative therapies. Finally, the degradability of the microgels at physiological conditions caused by hydrolysis-sensitive ester groups in the polymer network is examined.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microgeles Idioma: En Revista: Adv Healthc Mater Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microgeles Idioma: En Revista: Adv Healthc Mater Año: 2020 Tipo del documento: Article País de afiliación: Alemania
...