Your browser doesn't support javascript.
loading
Markov-Modulated Continuous-Time Markov Chains to Identify Site- and Branch-Specific Evolutionary Variation in BEAST.
Baele, Guy; Gill, Mandev S; Bastide, Paul; Lemey, Philippe; Suchard, Marc A.
Afiliación
  • Baele G; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
  • Gill MS; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
  • Bastide P; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
  • Lemey P; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
  • Suchard MA; Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA.
Syst Biol ; 70(1): 181-189, 2021 01 01.
Article en En | MEDLINE | ID: mdl-32415977
Markov models of character substitution on phylogenies form the foundation of phylogenetic inference frameworks. Early models made the simplifying assumption that the substitution process is homogeneous over time and across sites in the molecular sequence alignment. While standard practice adopts extensions that accommodate heterogeneity of substitution rates across sites, heterogeneity in the process over time in a site-specific manner remains frequently overlooked. This is problematic, as evolutionary processes that act at the molecular level are highly variable, subjecting different sites to different selective constraints over time, impacting their substitution behavior. We propose incorporating time variability through Markov-modulated models (MMMs), which extend covarion-like models and allow the substitution process (including relative character exchange rates as well as the overall substitution rate) at individual sites to vary across lineages. We implement a general MMM framework in BEAST, a popular Bayesian phylogenetic inference software package, allowing researchers to compose a wide range of MMMs through flexible XML specification. Using examples from bacterial, viral, and plastid genome evolution, we show that MMMs impact phylogenetic tree estimation and can substantially improve model fit compared to standard substitution models. Through simulations, we show that marginal likelihood estimation accurately identifies the generative model and does not systematically prefer the more parameter-rich MMMs. To mitigate the increased computational demands associated with MMMs, our implementation exploits recent developments in BEAGLE, a high-performance computational library for phylogenetic inference. [Bayesian inference; BEAGLE; BEAST; covarion, heterotachy; Markov-modulated models; phylogenetics.].
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Evolución Molecular / Modelos Genéticos Idioma: En Revista: Syst Biol Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Evolución Molecular / Modelos Genéticos Idioma: En Revista: Syst Biol Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido