Your browser doesn't support javascript.
loading
Continuously-tunable light-matter coupling in optical microcavities with 2D semiconductors.
Wall, Franziska; Mey, Oliver; Schneider, Lorenz Maximilian; Rahimi-Iman, Arash.
Afiliación
  • Wall F; Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany.
  • Mey O; Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany.
  • Schneider LM; Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany.
  • Rahimi-Iman A; Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany. a.r-i@physik.uni-marburg.de.
Sci Rep ; 10(1): 8303, 2020 May 19.
Article en En | MEDLINE | ID: mdl-32427933
A theoretical variation between the two distinct light-matter coupling regimes, namely weak and strong coupling, becomes uniquely feasible in open optical Fabry-Pérot microcavities with low mode volume, as discussed here. In combination with monolayers of transition-metal dichalcogenides (TMDCs) such as WS2, which exhibits a large exciton oscillator strength and binding energy, the room-temperature observation of hybrid bosonic quasiparticles, referred to as exciton-polaritons and characterized by a Rabi splitting, comes into reach. In this context, our simulations using the transfer-matrix method show how to tailor and alter the coupling strength actively by varying the relative field strength at the excitons' position - exploiting a tunable cavity length, a transparent PMMA spacer layer and angle-dependencies of optical resonances. Continuously tunable coupling for future experiments is hereby proposed, capable of real-time adjustable Rabi splitting as well as switching between the two coupling regimes. Being nearly independent of the chosen material, the suggested structure could also be used in the context of light-matter-coupling experiments with quantum dots, molecules or quantum wells. While the adjustable polariton energy levels could be utilized for polariton-chemistry or optical sensing, cavities that allow working at the exceptional point promise the exploration of topological properties of that point.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido