Your browser doesn't support javascript.
loading
The myosin interacting-heads motif present in live tarantula muscle explains tetanic and posttetanic phosphorylation mechanisms.
Padrón, Raúl; Ma, Weikang; Duno-Miranda, Sebastian; Koubassova, Natalia; Lee, Kyoung Hwan; Pinto, Antonio; Alamo, Lorenzo; Bolaños, Pura; Tsaturyan, Andrey; Irving, Thomas; Craig, Roger.
Afiliación
  • Padrón R; Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655; raul.padron@umassmed.edu.
  • Ma W; Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616.
  • Duno-Miranda S; Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
  • Koubassova N; Institute of Mechanics, Moscow State University, 119992 Moscow, Russia.
  • Lee KH; Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655.
  • Pinto A; Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
  • Alamo L; Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
  • Bolaños P; Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
  • Tsaturyan A; Institute of Mechanics, Moscow State University, 119992 Moscow, Russia.
  • Irving T; Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616.
  • Craig R; Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655.
Proc Natl Acad Sci U S A ; 117(22): 11865-11874, 2020 06 02.
Article en En | MEDLINE | ID: mdl-32444484
ABSTRACT
Striated muscle contraction involves sliding of actin thin filaments along myosin thick filaments, controlled by calcium through thin filament activation. In relaxed muscle, the two heads of myosin interact with each other on the filament surface to form the interacting-heads motif (IHM). A key question is how both heads are released from the surface to approach actin and produce force. We used time-resolved synchrotron X-ray diffraction to study tarantula muscle before and after tetani. The patterns showed that the IHM is present in live relaxed muscle. Tetanic contraction produced only a very small backbone elongation, implying that mechanosensing-proposed in vertebrate muscle-is not of primary importance in tarantula. Rather, thick filament activation results from increases in myosin phosphorylation that release a fraction of heads to produce force, with the remainder staying in the ordered IHM configuration. After the tetanus, the released heads slowly recover toward the resting, helically ordered state. During this time the released heads remain close to actin and can quickly rebind, enhancing the force produced by posttetanic twitches, structurally explaining posttetanic potentiation. Taken together, these results suggest that, in addition to stretch activation in insects, two other mechanisms for thick filament activation have evolved to disrupt the interactions that establish the relaxed helices of IHMs one in invertebrates, by either regulatory light-chain phosphorylation (as in arthropods) or Ca2+-binding (in mollusks, lacking phosphorylation), and another in vertebrates, by mechanosensing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosforilación / Miosinas / Músculo Estriado Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosforilación / Miosinas / Músculo Estriado Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article