Astaxanthin improves osteopenia caused by aldehyde-stress resulting from Aldh2 mutation due to impaired osteoblastogenesis.
Biochem Biophys Res Commun
; 527(1): 270-275, 2020 06 18.
Article
en En
| MEDLINE
| ID: mdl-32446379
Aldehyde dehydrogenase 2 (ALDH2) plays major roles in aldehyde detoxification and in the catalysis of amino acids. ALDH2∗2, a dominant-negative transgenic expressing aldehyde dehydrogenase 2 (ALDH2) protein, is produced by a single nucleotide polymorphism (rs671) and is involved in the development of osteoporosis and hip fracture with aging. In a previous study, transgenic mice expressing Aldh2∗2(Aldh2∗2 Tg) osteoblastic cells or acetaldehyde -treated MC3T3-E1 showed impaired osteoblastogenesis and caused osteoporosis [1]. In this study, we demonstrated the effects of astaxanthin for differentiation to osteoblasts of MC3T3-E1 by the addition of acetaldehyde and Aldh2∗2 Tg mesenchymal stem cells in bone marrow. Astaxanthin restores the inhibited osteoblastogenesis by acetaldehyde in MC 3T3-E1 and in bone marrow mesenchymal stem cells of Aldh2∗2 Tg mice. Additionally, astaxanthin administration improved femur bone density in Aldh2∗2 Tg mice. Furthermore, astaxanthin improved cell survival and mitochondrial function in acetaldehyde-treated MC 3T3-E1 cells. Our results suggested that astaxanthin had restorative effects on osteoblast formation and provide new insight into the regulation of osteoporosis and suggest a novel strategy to promote bone formation in osteopenic diseases caused by impaired acetaldehyde metabolism.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Osteoclastos
/
Enfermedades Óseas Metabólicas
/
Aldehído Deshidrogenasa Mitocondrial
Límite:
Animals
Idioma:
En
Revista:
Biochem Biophys Res Commun
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Estados Unidos