Your browser doesn't support javascript.
loading
Multifunctional DNA Polymer-Assisted Upconversion Therapeutic Nanoplatform for Enhanced Photodynamic Therapy.
Jin, Yi; Wang, Hao; Li, Xiaona; Zhu, Han; Sun, Danna; Sun, Xiaojing; Liu, Huifang; Zhang, Ziying; Cao, Lingzhi; Gao, Changlin; Wang, Hui; Liang, Xing-Jie; Zhang, Jinchao; Yang, Xinjian.
Afiliación
  • Jin Y; College of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, P. R. China.
  • Wang H; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
  • Li X; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
  • Zhu H; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
  • Sun D; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
  • Sun X; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
  • Liu H; College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, P. R. China.
  • Zhang Z; College of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, P. R. China.
  • Cao L; College of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, P. R. China.
  • Gao C; College of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, P. R. China.
  • Wang H; College of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, P. R. China.
  • Liang XJ; Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
  • Zhang J; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
  • Yang X; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
ACS Appl Mater Interfaces ; 12(24): 26832-26841, 2020 Jun 17.
Article en En | MEDLINE | ID: mdl-32449617
Although considerable clinical attempts on various kinds of cancers have been made, photodynamic therapy (PDT) still suffers from attenuated therapeutic effects because of the developed resistance of cancer cells. As a novel antiapoptosis protein, survivin has been demonstrated to be selectively overexpressed in a great number of human malignancies and plays a significant part in cancer progression and therapeutic resistance. Herein, we present an upconversion nanoplatform for enhanced PDT by DNAzyme-mediated gene silencing of survivin. In our system, a long single-stranded DNA (ssDNA) with a repetitive aptamer (AS1411) and survivin-targeted DNAzyme was fabricated by rolling circle amplification (RCA) and adsorbed on the upconversion nanoparticles (UCNPs) by electrostatic attraction. The multivalence of the ssDNA endows the upconversion nanoplatform with high recognition and loading capacity of photosensitizers and DNAzymes. When the nanoplatform is targeted internalized into cancer cells, PDT can be triggered by near-infrared (NIR) light to generate reactive oxygen species (ROS) for killing the cancer cells. Moreover, the encoded DNAzyme can efficiently inhibit the gene expression of survivin, providing the potential to enhance the efficiency of PDT. This study thus highlights the promise of an upconversion photodynamic nanoplatform for admirable combination therapy in cancer.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotoquimioterapia / Polímeros / ADN Catalítico Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotoquimioterapia / Polímeros / ADN Catalítico Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos