Your browser doesn't support javascript.
loading
Direct observation of water-mediated single-proton transport between hBN surface defects.
Comtet, Jean; Grosjean, Benoit; Glushkov, Evgenii; Avsar, Ahmet; Watanabe, Kenji; Taniguchi, Takashi; Vuilleumier, Rodolphe; Bocquet, Marie-Laure; Radenovic, Aleksandra.
Afiliación
  • Comtet J; Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. jean.comtet@gmail.com.
  • Grosjean B; PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, Paris, France.
  • Glushkov E; Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Avsar A; Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Watanabe K; Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Taniguchi T; National Institute for Materials Science, Tsukuba, Japan.
  • Vuilleumier R; National Institute for Materials Science, Tsukuba, Japan.
  • Bocquet ML; PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, Paris, France.
  • Radenovic A; PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, Paris, France.
Nat Nanotechnol ; 15(7): 598-604, 2020 07.
Article en En | MEDLINE | ID: mdl-32451503
ABSTRACT
Aqueous proton transport at interfaces is ubiquitous and crucial for a number of fields, ranging from cellular transport and signalling, to catalysis and membrane science. However, due to their light mass, small size and high chemical reactivity, uncovering the surface transport of single protons at room temperature and in an aqueous environment has so far remained out-of-reach of conventional atomic-scale surface science techniques, such as scanning tunnelling microscopy. Here, we use single-molecule localization microscopy to resolve optically the transport of individual excess protons at the interface of hexagonal boron nitride crystals and aqueous solutions at room temperature. Single excess proton trajectories are revealed by the successive protonation and activation of optically active defects at the surface of the crystal. Our observations demonstrate, at the single-molecule scale, that the solid/water interface provides a preferential pathway for lateral proton transport, with broad implications for molecular charge transport at liquid interfaces.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Protones / Compuestos de Boro / Agua Idioma: En Revista: Nat Nanotechnol Año: 2020 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Protones / Compuestos de Boro / Agua Idioma: En Revista: Nat Nanotechnol Año: 2020 Tipo del documento: Article País de afiliación: Suiza