Your browser doesn't support javascript.
loading
Genetic algorithm search for the worst-case MRI RF exposure for a multiconfiguration implantable fixation system modeled using artificial neural networks.
Zheng, Jianfeng; Lan, Qianlong; Kainz, Wolfgang; Long, Stuart A; Chen, Ji.
Afiliación
  • Zheng J; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Lan Q; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Kainz W; Center for Devices and Radiological Health, Food and Drug Administration, Rockville, Maryland, USA.
  • Long SA; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
  • Chen J; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA.
Magn Reson Med ; 84(5): 2754-2764, 2020 11.
Article en En | MEDLINE | ID: mdl-32459032
ABSTRACT

PURPOSE:

This paper presents a method to search for the worst-case configuration leading to the highest RF exposure for a multiconfiguration implantable fixation system under MRI.

METHODS:

A two-step method combining an artificial neural network and a genetic algorithm is developed to achieve this purpose. In the first step, the level of RF exposure in terms of peak 1-g and/or 10-g averaged specific absorption rate (SAR1g/10g ), related to the multiconfiguration system, is predicted using an artificial neural network. A genetic algorithm is then used to search for the worst-case configuration of this multidimensional nonlinear problem within both the enumerated discrete sample space and generalized continuous sample space. As an example, a generic plate system with a total of 576 configurations is used for both 1.5T and 3T MRI systems.

RESULTS:

The presented method can effectively identify the worst-case configuration and accurately predict the SAR1g/10g with no more than 20% of the samples in the studied discrete sample space, and can even predict the worst case in the generalized continuous sample space. The worst-case prediction error in the generalized continuous sample space is less than 1.6% for SAR1g and less than 1.3% for SAR10g compared with the simulation results.

CONCLUSION:

The combination of an artificial neural network with genetic algorithm is a robust technique to determine the worst-case RF exposure level for a multiconfiguration system, and only needs a small amount of training data from the entire system.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos