Your browser doesn't support javascript.
loading
EEG dynamical network analysis method reveals the neural signature of visual-motor coordination.
Li, Xinzhe; Mota, Bruno; Kondo, Toshiyuki; Nasuto, Slawomir; Hayashi, Yoshikatsu.
Afiliación
  • Li X; Biomedical Science and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.
  • Mota B; Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  • Kondo T; Department of Computer and Information Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan.
  • Nasuto S; Biomedical Science and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.
  • Hayashi Y; Biomedical Science and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.
PLoS One ; 15(5): e0231767, 2020.
Article en En | MEDLINE | ID: mdl-32459820
Human visual-motor coordination is an essential function of movement control, which requires interactions of multiple brain regions. Understanding the cortical-motor coordination is important for improving physical therapy for motor disabilities. However, its underlying transient neural dynamics is still largely unknown. In this study, we applied an eigenvector-based dynamical network analysis method to investigate the functional connectivity calculated from electroencephalography (EEG) signals under visual-motor coordination task and to identify its meta-stable states dynamics. We first tested this signal processing on a simulated network to evaluate it in comparison with other dynamical methods, demonstrating that the eigenvector-based dynamical network analysis was able to correctly extract the dynamical features of the evolving networks. Subsequently, the eigenvector-based analysis was applied to EEG data collected under a visual-motor coordination experiment. In the EEG study with participants, the results of both topological analysis and the eigenvector-based dynamical analysis were able to distinguish different experimental conditions of visual tracking task. With the dynamical analysis, we showed that different visual-motor coordination states can be distinguished by investigating the meta-stable states dynamics of the functional connectivity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Desempeño Psicomotor / Procesamiento de Señales Asistido por Computador / Electroencefalografía Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Desempeño Psicomotor / Procesamiento de Señales Asistido por Computador / Electroencefalografía Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos