Inferring MicroRNA-Disease Associations Based on the Identification of a Functional Module.
J Comput Biol
; 28(1): 33-42, 2021 01.
Article
en En
| MEDLINE
| ID: mdl-32493067
Inferring potential associations between microRNAs (miRNAs) and human diseases can help people understand the pathogenesis of complex human diseases. Several computational approaches have been presented to discover novel miRNA-disease associations based on a top-ranked association model. However, some top-ranked miRNAs are not easily used to reveal the association between miRNAs and diseases. This study aims to infer miRNA-disease relationship by identifying a functional module. We first construct a miRNA functional similarity network derived from a disease similarity network and a known miRNA-disease relationship network. We then present an improved K-means (i.e., IK-means) algorithm to detect miRNA functional modules and used 243 diseases to validate the performance of our proposed method. Experimental results indicate that the performance of IK-means is better compared with classical K-means algorithms. Case studies on some functional modules further demonstrate the applicability of IK-means in the identification of new miRNA-disease associations.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Predisposición Genética a la Enfermedad
/
MicroARNs
/
Redes Reguladoras de Genes
Tipo de estudio:
Diagnostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
J Comput Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
INFORMATICA MEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos