Your browser doesn't support javascript.
loading
Inferring MicroRNA-Disease Associations Based on the Identification of a Functional Module.
Cao, Buwen; Deng, Shuguang; Qin, Hua; Luo, Jiawei; Li, Guanghui; Liang, Cheng.
Afiliación
  • Cao B; College of Information and Electronic Engineering, Hunan City University, Yiyang, China.
  • Deng S; College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
  • Qin H; College of Information and Electronic Engineering, Hunan City University, Yiyang, China.
  • Luo J; College of Information and Electronic Engineering, Hunan City University, Yiyang, China.
  • Li G; College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
  • Liang C; School of Information Engineering, East China Jiaotong University, Nanchang, China.
J Comput Biol ; 28(1): 33-42, 2021 01.
Article en En | MEDLINE | ID: mdl-32493067
Inferring potential associations between microRNAs (miRNAs) and human diseases can help people understand the pathogenesis of complex human diseases. Several computational approaches have been presented to discover novel miRNA-disease associations based on a top-ranked association model. However, some top-ranked miRNAs are not easily used to reveal the association between miRNAs and diseases. This study aims to infer miRNA-disease relationship by identifying a functional module. We first construct a miRNA functional similarity network derived from a disease similarity network and a known miRNA-disease relationship network. We then present an improved K-means (i.e., IK-means) algorithm to detect miRNA functional modules and used 243 diseases to validate the performance of our proposed method. Experimental results indicate that the performance of IK-means is better compared with classical K-means algorithms. Case studies on some functional modules further demonstrate the applicability of IK-means in the identification of new miRNA-disease associations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Predisposición Genética a la Enfermedad / MicroARNs / Redes Reguladoras de Genes Tipo de estudio: Diagnostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Comput Biol Asunto de la revista: BIOLOGIA MOLECULAR / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Predisposición Genética a la Enfermedad / MicroARNs / Redes Reguladoras de Genes Tipo de estudio: Diagnostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Comput Biol Asunto de la revista: BIOLOGIA MOLECULAR / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos