Your browser doesn't support javascript.
loading
Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ1 RNA Riboswitches.
Gong, Zhou; Yang, Shuai; Dong, Xu; Yang, Qing-Fen; Zhu, Yue-Ling; Xiao, Yi; Tang, Chun.
Afiliación
  • Gong Z; CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
  • Yang S; CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
  • Dong X; CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
  • Yang QF; CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
  • Zhu YL; CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
  • Xiao Y; Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
  • Tang C; CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
J Mol Biol ; 432(16): 4523-4543, 2020 07 24.
Article en En | MEDLINE | ID: mdl-32522558
ABSTRACT
Single-stranded noncoding regulatory RNAs, as exemplified by bacterial riboswitches, are highly dynamic. The conformational dynamics allow the riboswitch to reach maximum switching efficiency under appropriate conditions. Here we characterize the conformational dynamics of preQ1 riboswitches from mesophilic and thermophilic bacterial species at various temperatures. With the integrative use of small-angle X-ray scattering, NMR, and molecular dynamics simulations, we model the ensemble-structures of the preQ1 riboswitch aptamers without or with a ligand bound. We show that the preQ1 riboswitch is sufficiently dynamic and fluctuating among multiple folding intermediates only near the physiological temperature of the microorganism. The hierarchical folding dynamics of the RNA involves the docking of 3'-tail to form a second RNA helix and the helical stacking to form an H-type pseudoknot structure. Further, we show that RNA secondary and tertiary dynamics can be modulated by temperature and by the length of an internal loop. The coupled equilibria between RNA folding intermediates are essential for preQ1 binding, and a four-state exchange model can account for the change of ligand-triggered switching efficiency with temperature. Together, we have established a relationship between the hierarchical dynamics and riboswitch function, and illustrated how the RNA adapts to high temperature.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacillus subtilis / ARN no Traducido / Firmicutes Idioma: En Revista: J Mol Biol Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacillus subtilis / ARN no Traducido / Firmicutes Idioma: En Revista: J Mol Biol Año: 2020 Tipo del documento: Article País de afiliación: China
...