Your browser doesn't support javascript.
loading
Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations.
Tsutakawa, Susan E; Sarker, Altaf H; Ng, Clifford; Arvai, Andrew S; Shin, David S; Shih, Brian; Jiang, Shuai; Thwin, Aye C; Tsai, Miaw-Sheue; Willcox, Alexandra; Her, Mai Zong; Trego, Kelly S; Raetz, Alan G; Rosenberg, Daniel; Bacolla, Albino; Hammel, Michal; Griffith, Jack D; Cooper, Priscilla K; Tainer, John A.
Afiliación
  • Tsutakawa SE; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; setsutakawa@lbl.gov jdg@med.unc.edu PKCooper@lbl.gov jatainer@gmail.com.
  • Sarker AH; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Ng C; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Arvai AS; Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA 92037.
  • Shin DS; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Shih B; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Jiang S; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Thwin AC; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Tsai MS; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Willcox A; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599.
  • Her MZ; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Trego KS; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Raetz AG; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Rosenberg D; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Bacolla A; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030.
  • Hammel M; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030.
  • Griffith JD; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Cooper PK; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 setsutakawa@lbl.gov jdg@med.unc.edu PKCooper@lbl.gov jatainer@gmail.com.
  • Tainer JA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; setsutakawa@lbl.gov jdg@med.unc.edu PKCooper@lbl.gov jatainer@gmail.com.
Proc Natl Acad Sci U S A ; 117(25): 14127-14138, 2020 06 23.
Article en En | MEDLINE | ID: mdl-32522879
ABSTRACT
Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG's role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Xerodermia Pigmentosa / Proteínas Nucleares / Mutación Puntual / Síndrome de Cockayne / Proteínas de Unión al ADN / Endonucleasas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Xerodermia Pigmentosa / Proteínas Nucleares / Mutación Puntual / Síndrome de Cockayne / Proteínas de Unión al ADN / Endonucleasas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article