Your browser doesn't support javascript.
loading
Endurance Exercise-Induced Autophagy/Mitophagy Coincides with a Reinforced Anabolic State and Increased Mitochondrial Turnover in the Cortex of Young Male Mouse Brain.
Kwon, Insu; Jang, Yongchul; Lee, Youngil.
Afiliación
  • Kwon I; Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, 11000 University Pkwy, Bldg.72, Pensacola, FL, 32514, USA.
  • Jang Y; Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, 11000 University Pkwy, Bldg.72, Pensacola, FL, 32514, USA.
  • Lee Y; Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, 11000 University Pkwy, Bldg.72, Pensacola, FL, 32514, USA. ylee1@uwf.edu.
J Mol Neurosci ; 71(1): 42-54, 2021 Jan.
Article en En | MEDLINE | ID: mdl-32535714
Autophagy/mitophagy, a cellular catabolic process necessary for sustaining normal cellular function, has emerged as a potential therapeutic strategy against numerous obstinate diseases. In this regard, endurance exercise (EXE)-induced autophagy/mitophagy (EIAM) has been considered as a potential health-enriching factor in various tissues including the brain; however, underlying mechanisms of EIAM in the brain has not been fully defined yet. This study investigated the molecular signaling nexus of EIAM pathways in the cortex of the brain. C57BL/6 young male mice were randomly assigned to a control group (CON, n = 12) and an endurance exercise group (EXE, n = 12). Our data demonstrated that exercise-induced autophagy coincided with an enhanced anabolic state (p-AKT, p-mTOR, and p-p70S6K); furthermore, mitophagy concurred with enhanced mitochondrial turnover: increases in both fission (DRP1, BNIP3, and PINK1) and fusion (OPA1 and MFN2) proteins. In addition, neither oxidative stress nor sirtuins (SIRT) 1 and 3 were associated with EIAM; instead, the activation of AMPK as well as a JNK-BCL2 axis was linked to EIAM promotion. Collectively, our results demonstrated that EXE-induced anabolic enrichment did not hinder autophagy/mitophagy and that the concurrent augmentation of mitochondrial fusion and fusion process contributed to sustaining mitophagy in the cortex of the brain. Our findings suggest that the EXE-induced concomitant potentiation of the catabolic and anabolic state is a unique molecular mechanism that simultaneously contributes to recycling and rebuilding the cellular structure, leading to upholding healthy cellular environment. Thus, the current study provides a novel autophagy/mitophagy mechanism, from which groundbreaking pharmacological strategies of autophagy can be developed.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Condicionamiento Físico Animal / Autofagia / Corteza Cerebral / Recambio Mitocondrial / Metabolismo / Proteínas del Tejido Nervioso Límite: Animals Idioma: En Revista: J Mol Neurosci Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Condicionamiento Físico Animal / Autofagia / Corteza Cerebral / Recambio Mitocondrial / Metabolismo / Proteínas del Tejido Nervioso Límite: Animals Idioma: En Revista: J Mol Neurosci Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos