Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant Tamarix chinensis.
FEMS Microbiol Lett
; 367(12)2020 06 01.
Article
en En
| MEDLINE
| ID: mdl-32556312
Wetlands have been proposed as a sink for pollutants such as heavy metals. Wetland plants play a significant role in the phytoremediation of heavy metals. Here, we isolated and characterized three novel nickel (Ni)-resistant endophytic bacteria (NiEB) from the wetland plant Tamarix chinensis. The NiEB were identified as Stenotrophomonas sp. S20, Pseudomonas sp. P21 and Sphingobium sp. S42. All isolates tolerated 50 mg L-1 Ni, with isolates S20 and P21 being more tolerant to Ni at up to 400 mg L-1. Moreover, isolate S42 removed 33.7% of nickel sulfate from the water by forming white precipitates. The three isolates exhibited different plant growth-promoting (PGP) traits related to the production of indole acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Phytotoxicity studies revealed that the growth of the wetland plants in a high Ni concentration (200 mg L-1) recovered after co-incubation with isolate S42. Overall, this study presents the first report of NiEB isolation from wetland plants and provides novel insights into the diverse functions of endophytic bacteria in a plant host with the potential to improve Ni phytoremediation.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Biodegradación Ambiental
/
Proteobacteria
/
Farmacorresistencia Bacteriana
/
Tamaricaceae
/
Níquel
Idioma:
En
Revista:
FEMS Microbiol Lett
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Reino Unido