Your browser doesn't support javascript.
loading
Highly-efficient, Rapid and continuous separation of surfactant-stabilized Oil/Water emulsions by selective under-liquid adhering emulsified droplets.
Zhang, Jie; Huang, Dan; Wu, Gang; Chen, Si-Chong; Wang, Yu-Zhong.
Afiliación
  • Zhang J; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Huang D; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Wu G; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
  • Chen SC; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China. Electroni
  • Wang YZ; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
J Hazard Mater ; 400: 123132, 2020 Dec 05.
Article en En | MEDLINE | ID: mdl-32563901
ABSTRACT
Anti-adhesion is considered to be the basis for oil/water separation. However, this principle may not the superior choice for surfactant-stabilized oil/water emulsions owing to the inevitable adhesion of surfactant on the membrane, resulting in further adhesion of emulsified droplets and therefore attenuation in separation performance. Herein, we demonstrated a novel separation strategy for surfactant-stabilized oil/water emulsions by exploiting rather than preventing adhesion. A modified filter paper (mFP) with strong under-liquid adhesion to emulsified droplets was prepared, endowing it excellent separation performance for both surfactant-stabilized and surfactant free emulsions with very high separation efficiency (up to 99.9 %). Furthermore, the Random layer stacked scraps of mFP (RLS-mFP) were used to construct the separation device, which provided a labyrinthine but unobstructed flow path for emulsion because of the randomly stacked form and relatively large interspace among mFP scraps. The RLS-mFP has excellent separation performance with the separation flux for surfactant-stabilized oil-in-water and water-in-oil emulsions achieving 1035 and 3570 L m-2 h-1 respectively only under gravity. After 1-hour continuous separation, both flux and separation efficiency of RLS-mFP showed almost no decline comparing to initial flux for surfactant-stabilized emulsions. Meanwhile, the mFP could be easily recycled by rinsing and reused at least 50 times without sacrificing separation performance.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: China