Your browser doesn't support javascript.
loading
Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta.
Hijazi, Sara; Heistek, Tim S; van der Loo, Rolinka; Mansvelder, Huibert D; Smit, August B; van Kesteren, Ronald E.
Afiliación
  • Hijazi S; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
  • Heistek TS; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
  • van der Loo R; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
  • Mansvelder HD; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
  • Smit AB; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
  • van Kesteren RE; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands. Electronic address: ronald.van.kesteren@vu.nl.
iScience ; 23(7): 101271, 2020 Jul 24.
Article en En | MEDLINE | ID: mdl-32593000
ABSTRACT
Parvalbumin (PV) interneuron dysfunction is associated with various brain disorders, including Alzheimer disease (AD). Here, we asked whether early PV neuron hyperexcitability primes the hippocampus for amyloid beta-induced functional impairment. We show that prolonged chemogenetic activation of PV neurons induces long-term hyperexcitability of these cells, disrupts synaptic transmission, and causes spatial memory deficits on the short-term. On the long-term, pyramidal cells also become hyperexcitable, and synaptic transmission and spatial memory are restored. However, under these conditions of increased excitability of both PV and pyramidal cells, a single low-dose injection of amyloid beta directly into the hippocampus significantly impairs PV neuron function, increases pyramidal neuron excitability, and reduces synaptic transmission, resulting in significant spatial memory deficits. Taken together, our data show that an initial hyperexcitable state of PV neurons renders hippocampal function vulnerable to amyloid beta and may contribute to an increased risk for developing AD.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA