Your browser doesn't support javascript.
loading
Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes.
Altamia, Marvin A; Lin, Zhenjian; Trindade-Silva, Amaro E; Uy, Iris Diana; Shipway, J Reuben; Wilke, Diego Veras; Concepcion, Gisela P; Distel, Daniel L; Schmidt, Eric W; Haygood, Margo G.
Afiliación
  • Altamia MA; Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts, USA.
  • Lin Z; The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
  • Trindade-Silva AE; Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA.
  • Uy ID; Bioinformatic and Microbial Ecology Laboratory-BIOME, Federal University of Bahia, Salvador, Bahia, Brazil.
  • Shipway JR; Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Ceará, Brazil.
  • Wilke DV; The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
  • Concepcion GP; Philippine Genome Center, University of the Philippines Diliman, Quezon City, Philippines.
  • Distel DL; Institute of Marine Science, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom.
  • Schmidt EW; Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Ceará, Brazil.
  • Haygood MG; The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
mSystems ; 5(3)2020 Jun 30.
Article en En | MEDLINE | ID: mdl-32606027
Shipworms play critical roles in recycling wood in the sea. Symbiotic bacteria supply enzymes that the organisms need for nutrition and wood degradation. Some of these bacteria have been grown in pure culture and have the capacity to make many secondary metabolites. However, little is known about whether such secondary metabolite pathways are represented in the symbiont communities within their hosts. In addition, little has been reported about the patterns of host-symbiont co-occurrence. Here, we collected shipworms from the United States, the Philippines, and Brazil and cultivated symbiotic bacteria from their gills. We analyzed sequences from 22 shipworm gill metagenomes from seven shipworm species and from 23 cultivated symbiont isolates. Using (meta)genome sequencing, we demonstrate that the cultivated isolates represent all the major bacterial symbiont species and strains in shipworm gills. We show that the bacterial symbionts are distributed among shipworm hosts in consistent, predictable patterns. The symbiotic bacteria harbor many gene cluster families (GCFs) for biosynthesis of bioactive secondary metabolites, only <5% of which match previously described biosynthetic pathways. Because we were able to cultivate the symbionts and to sequence their genomes, we can definitively enumerate the biosynthetic pathways in these symbiont communities, showing that ∼150 of ∼200 total biosynthetic gene clusters (BGCs) present in the animal gill metagenomes are represented in our culture collection. Shipworm symbionts occur in suites that differ predictably across a wide taxonomic and geographic range of host species and collectively constitute an immense resource for the discovery of new biosynthetic pathways corresponding to bioactive secondary metabolites.IMPORTANCE We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: MSystems Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: MSystems Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos