Your browser doesn't support javascript.
loading
Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces.
Pingali, Sai Venkatesh; Smith, Micholas Dean; Liu, Shih-Hsien; Rawal, Takat B; Pu, Yunqiao; Shah, Riddhi; Evans, Barbara R; Urban, Volker S; Davison, Brian H; Cai, Charles M; Ragauskas, Arthur J; O'Neill, Hugh M; Smith, Jeremy C; Petridis, Loukas.
Afiliación
  • Pingali SV; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, ORNL TN 37830.
  • Smith MD; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • Liu SH; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996.
  • Rawal TB; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • Pu Y; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • Shah R; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996.
  • Evans BR; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • Urban VS; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, ORNL TN 37830.
  • Davison BH; Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • Cai CM; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, ORNL TN 37830.
  • Ragauskas AJ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
  • O'Neill HM; Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, CA 92521.
  • Smith JC; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
  • Petridis L; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.
Proc Natl Acad Sci U S A ; 117(29): 16776-16781, 2020 07 21.
Article en En | MEDLINE | ID: mdl-32636260
ABSTRACT
A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF)water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent water-rich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THFwater pretreatment is provided matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Madera / Biotecnología / Lignina Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Madera / Biotecnología / Lignina Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article