Your browser doesn't support javascript.
loading
Compression of curium pyrrolidine-dithiocarbamate enhances covalency.
Sperling, Joseph M; Warzecha, Evan J; Celis-Barros, Cristian; Sergentu, Dumitru-Claudiu; Wang, Xiaoyu; Klamm, Bonnie E; Windorff, Cory J; Gaiser, Alyssa N; White, Frankie D; Beery, Drake A; Chemey, Alexander T; Whitefoot, Megan A; Long, Brian N; Hanson, Kenneth; Kögerler, Paul; Speldrich, Manfred; Zurek, Eva; Autschbach, Jochen; Albrecht-Schönzart, Thomas E.
Afiliación
  • Sperling JM; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Warzecha EJ; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Celis-Barros C; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Sergentu DC; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
  • Wang X; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
  • Klamm BE; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Windorff CJ; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Gaiser AN; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • White FD; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Beery DA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Chemey AT; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Whitefoot MA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Long BN; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Hanson K; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
  • Kögerler P; Institut für Anorganische Chemie, RWTH Aachen University, Aachen, Germany.
  • Speldrich M; Institut für Anorganische Chemie, RWTH Aachen University, Aachen, Germany. manfred.speldrich@rwth-aachen.de.
  • Zurek E; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA. ezurek@buffalo.edu.
  • Autschbach J; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA. jochena@buffalo.edu.
  • Albrecht-Schönzart TE; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA. talbrechtschmitt@fsu.edu.
Nature ; 583(7816): 396-399, 2020 07.
Article en En | MEDLINE | ID: mdl-32669698
ABSTRACT
Curium is unique in the actinide series because its half-filled 5f 7 shell has lower energy than other 5f n configurations, rendering it both redox-inactive and resistant to forming chemical bonds that engage the 5f shell1-3. This is even more pronounced in gadolinium, curium's lanthanide analogue, owing to the contraction of the 4f orbitals with respect to the 5f orbitals4. However, at high pressures metallic curium undergoes a transition from localized to itinerant 5f electrons5. This transition is accompanied by a crystal structure dictated by the magnetic interactions between curium atoms5,6. Therefore, the question arises of whether the frontier metal orbitals in curium(III)-ligand interactions can also be modified by applying pressure, and thus be induced to form metal-ligand bonds with a degree of covalency. Here we report experimental and computational evidence for changes in the relative roles of the 5f/6d orbitals in curium-sulfur bonds in [Cm(pydtc)4]- (pydtc, pyrrolidinedithiocarbamate) at high pressures (up to 11 gigapascals). We compare these results to the spectra of [Nd(pydtc)4]- and of a Cm(III) mellitate that possesses only curium-oxygen bonds. Compared with the changes observed in the [Cm(pydtc)4]- spectra, we observe smaller changes in the f-f transitions in the [Nd(pydtc)4]- absorption spectrum and in the f-f emission spectrum of the Cm(III) mellitate upon pressurization, which are related to the smaller perturbation of the nature of their bonds. These results reveal that the metal orbital contributions to the curium-sulfur bonds are considerably enhanced at high pressures and that the 5f orbital involvement doubles between 0 and 11 gigapascal. Our work implies that covalency in actinides is complex even when dealing with the same ion, but it could guide the selection of ligands to study the effect of pressure on actinide compounds.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos