Your browser doesn't support javascript.
loading
Klp2 and Ase1 synergize to maintain meiotic spindle stability during metaphase I.
Zheng, Fan; Dong, Fenfen; Yu, Shuo; Li, Tianpeng; Jian, Yanze; Nie, Lingyun; Fu, Chuanhai.
Afiliación
  • Zheng F; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science a
  • Dong F; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science a
  • Yu S; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science a
  • Li T; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science a
  • Jian Y; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science a
  • Nie L; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science a
  • Fu C; Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science a
J Biol Chem ; 295(38): 13287-13298, 2020 09 18.
Article en En | MEDLINE | ID: mdl-32723864
The spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule cross-linker Ase1, as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Schizosaccharomyces / Proteínas de Schizosaccharomyces pombe / Metafase / Proteínas Asociadas a Microtúbulos / Huso Acromático Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Schizosaccharomyces / Proteínas de Schizosaccharomyces pombe / Metafase / Proteínas Asociadas a Microtúbulos / Huso Acromático Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos