Your browser doesn't support javascript.
loading
Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair.
Selig, Mischa; Lauer, Jasmin C; Hart, Melanie L; Rolauffs, Bernd.
Afiliación
  • Selig M; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
  • Lauer JC; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
  • Hart ML; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
  • Rolauffs B; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
Int J Mol Sci ; 21(15)2020 Jul 29.
Article en En | MEDLINE | ID: mdl-32751354
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-ß1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-ß1- and interleukin 1 beta (IL-1ß)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoartritis / Regeneración / Materiales Biocompatibles / Cartílago Articular / Condrocitos / Mecanotransducción Celular Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoartritis / Regeneración / Materiales Biocompatibles / Cartílago Articular / Condrocitos / Mecanotransducción Celular Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza