Your browser doesn't support javascript.
loading
Neutron diffraction analysis of stress and strain partitioning in a two-phase microstructure with parallel-aligned phases.
Huang, Qiuliang; Shi, Ran; Muránsky, Ondrej; Beladi, Hossein; Kabra, Saurabh; Schimpf, Christian; Volkova, Olena; Biermann, Horst; Mola, Javad.
Afiliación
  • Huang Q; Institute of Iron and Steel Technology, Technische Universität Bergakademie Freiberg, Leipziger Str. 34, 09599, Freiberg, Germany.
  • Shi R; Institute of Energy Process Engineering and Chemical Engineering, Fuchsmühlenweg 9, 09599, Freiberg, Germany.
  • Muránsky O; Material Design and Structural Integrity Lab, Faculty of Engineering and Computer Sciences, Osnabrück University of Applied Sciences, Albrecht St. 30, 49076, Osnabrück, Germany.
  • Beladi H; Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW, 2234, Australia.
  • Kabra S; Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia.
  • Schimpf C; ISIS Neutron and Muon facility, The Rutherford Appleton Laboratory, Oxfordshire, UK.
  • Volkova O; Institute of Materials Science, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Straße 5, 09599, Freiberg, Germany.
  • Biermann H; Institute of Iron and Steel Technology, Technische Universität Bergakademie Freiberg, Leipziger Str. 34, 09599, Freiberg, Germany.
  • Mola J; Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Straße 5, 09599, Freiberg, Germany.
Sci Rep ; 10(1): 13536, 2020 Aug 11.
Article en En | MEDLINE | ID: mdl-32782253
ABSTRACT
By time-of-flight (TOF) neutron diffraction experiments, the influence of segregation-induced microstructure bands of austenite (γ) and martensite (α' ) phases on the partitioning of stress and strain between these phases was investigated. Initially, tensile specimens of a Co-added stainless steel were heat treated by quenching and partitioning (Q&P) processing. Tensile specimens were subsequently loaded at 350 °C parallel to the length of the bands within the apparent elastic limit of the phase mixture. Lattice parameters in both axial and transverse directions were simultaneously measured for both phases. The observation of a lattice expansion for the γ phase in the transverse direction indicated a constraint on the free transverse straining of γ arising from the banded microstructure. The lateral contraction of α' imposed an interphase tensile microstress in the transverse direction of the γ phase. The multiaxial stress state developed in the γ phase resulted in a large deviation from the level of plastic strain expected for uniaxial loading of single phase γ. Since segregation-induced banded microstructures commonly occur in many engineering alloys, the analysis of stress and strain partitioning with the present Q&P steel can be used to interpret the observations made for further engineering alloys with two-phase microstructures.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Alemania
...