Your browser doesn't support javascript.
loading
Model-based Prediction of Critical Illness in Hospitalized Patients with COVID-19.
Schalekamp, Steven; Huisman, Merel; van Dijk, Rogier A; Boomsma, Martijn F; Freire Jorge, Pedro J; de Boer, Wytze S; Herder, Gerada Judith M; Bonarius, Marja; Groot, Oscar A; Jong, Eefje; Schreuder, Anton; Schaefer-Prokop, Cornelia M.
Afiliación
  • Schalekamp S; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Huisman M; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • van Dijk RA; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Boomsma MF; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Freire Jorge PJ; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • de Boer WS; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Herder GJM; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Bonarius M; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Groot OA; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Jong E; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Schreuder A; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
  • Schaefer-Prokop CM; From the Department of Radiology (S.S., M.H., C.M.S.P.), Department of Internal Medicine, Division of Pulmonology (G.J.M.H., M.B.), Department of Internal Medicine, Division of Intensive Care Medicine (O.A.G.), and Department of Internal Medicine, Division of Infectiology (E.J.), Meander Medisch Cen
Radiology ; 298(1): E46-E54, 2021 01.
Article en En | MEDLINE | ID: mdl-32787701
Background The prognosis of hospitalized patients with severe coronavirus disease 2019 (COVID-19) is difficult to predict, and the capacity of intensive care units was a limiting factor during the peak of the pandemic and is generally dependent on a country's clinical resources. Purpose To determine the value of chest radiographic findings together with patient history and laboratory markers at admission to predict critical illness in hospitalized patients with COVID-19. Materials and Methods In this retrospective study, which included patients from March 7, 2020, to April 24, 2020, a consecutive cohort of hospitalized patients with real-time reverse transcription polymerase chain reaction-confirmed COVID-19 from two large Dutch community hospitals was identified. After univariable analysis, a risk model to predict critical illness (ie, death and/or intensive care unit admission with invasive ventilation) was developed, using multivariable logistic regression including clinical, chest radiographic, and laboratory findings. Distribution and severity of lung involvement were visually assessed by using an eight-point scale (chest radiography score). Internal validation was performed by using bootstrapping. Performance is presented as an area under the receiver operating characteristic curve. Decision curve analysis was performed, and a risk calculator was derived. Results The cohort included 356 hospitalized patients (mean age, 69 years ± 12 [standard deviation]; 237 men) of whom 168 (47%) developed critical illness. The final risk model's variables included sex, chronic obstructive lung disease, symptom duration, neutrophil count, C-reactive protein level, lactate dehydrogenase level, distribution of lung disease, and chest radiography score at hospital presentation. The area under the receiver operating characteristic curve of the model was 0.77 (95% CI: 0.72, 0.81; P < .001). A risk calculator was derived for individual risk assessment: Dutch COVID-19 risk model. At an example threshold of 0.70, 71 of 356 patients would be predicted to develop critical illness, of which 59 (83%) would be true-positive results. Conclusion A risk model based on chest radiographic and laboratory findings obtained at admission was predictive of critical illness in hospitalized patients with coronavirus disease 2019. This risk calculator might be useful for triage of patients to the limited number of intensive care unit beds or facilities. © RSNA, 2020 Online supplemental material is available for this article.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Radiografía Torácica / COVID-19 / Hospitalización Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Radiology Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Radiografía Torácica / COVID-19 / Hospitalización Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Radiology Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos