Your browser doesn't support javascript.
loading
ABHD11 maintains 2-oxoglutarate metabolism by preserving functional lipoylation of the 2-oxoglutarate dehydrogenase complex.
Bailey, Peter S J; Ortmann, Brian M; Martinelli, Anthony W; Houghton, Jack W; Costa, Ana S H; Burr, Stephen P; Antrobus, Robin; Frezza, Christian; Nathan, James A.
Afiliación
  • Bailey PSJ; Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
  • Ortmann BM; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
  • Martinelli AW; Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
  • Houghton JW; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
  • Costa ASH; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
  • Burr SP; Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
  • Antrobus R; MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.
  • Frezza C; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
  • Nathan JA; Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
Nat Commun ; 11(1): 4046, 2020 08 13.
Article en En | MEDLINE | ID: mdl-32792488
ABSTRACT
2-oxoglutarate (2-OG or α-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG dependent dioxygenase function. ABHD11 loss or inhibition drives a rapid increase in 2-OG levels by impairing lipoylation of the 2-OG dehydrogenase complex (OGDHc)-the rate limiting step for mitochondrial 2-OG metabolism. Rather than facilitating lipoate conjugation, ABHD11 associates with the OGDHc and maintains catalytic activity of lipoyl domain by preventing the formation of lipoyl adducts, highlighting ABHD11 as a regulator of functional lipoylation and 2-OG metabolism.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mutagénesis / Serina Proteasas / Complejo Cetoglutarato Deshidrogenasa / Ácidos Cetoglutáricos / Mitocondrias Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mutagénesis / Serina Proteasas / Complejo Cetoglutarato Deshidrogenasa / Ácidos Cetoglutáricos / Mitocondrias Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido