Routine Laboratory Blood Tests Predict SARS-CoV-2 Infection Using Machine Learning.
Clin Chem
; 66(11): 1396-1404, 2020 11 01.
Article
en En
| MEDLINE
| ID: mdl-32821907
BACKGROUND: Accurate diagnostic strategies to identify SARS-CoV-2 positive individuals rapidly for management of patient care and protection of health care personnel are urgently needed. The predominant diagnostic test is viral RNA detection by RT-PCR from nasopharyngeal swabs specimens, however the results are not promptly obtainable in all patient care locations. Routine laboratory testing, in contrast, is readily available with a turn-around time (TAT) usually within 1-2 hours. METHOD: We developed a machine learning model incorporating patient demographic features (age, sex, race) with 27 routine laboratory tests to predict an individual's SARS-CoV-2 infection status. Laboratory testing results obtained within 2 days before the release of SARS-CoV-2 RT-PCR result were used to train a gradient boosting decision tree (GBDT) model from 3,356 SARS-CoV-2 RT-PCR tested patients (1,402 positive and 1,954 negative) evaluated at a metropolitan hospital. RESULTS: The model achieved an area under the receiver operating characteristic curve (AUC) of 0.854 (95% CI: 0.829-0.878). Application of this model to an independent patient dataset from a separate hospital resulted in a comparable AUC (0.838), validating the generalization of its use. Moreover, our model predicted initial SARS-CoV-2 RT-PCR positivity in 66% individuals whose RT-PCR result changed from negative to positive within 2 days. CONCLUSION: This model employing routine laboratory test results offers opportunities for early and rapid identification of high-risk SARS-CoV-2 infected patients before their RT-PCR results are available. It may play an important role in assisting the identification of SARS-CoV-2 infected patients in areas where RT-PCR testing is not accessible due to financial or supply constraints.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neumonía Viral
/
Infecciones por Coronavirus
/
Aprendizaje Automático
/
Pruebas Hematológicas
Tipo de estudio:
Diagnostic_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Adult
/
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Clin Chem
Asunto de la revista:
QUIMICA CLINICA
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Reino Unido