CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations.
Genome Med
; 12(1): 75, 2020 08 24.
Article
en En
| MEDLINE
| ID: mdl-32831124
Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/capice .
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Variación Genética
/
Programas Informáticos
/
Biología Computacional
/
Exoma
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Genome Med
Año:
2020
Tipo del documento:
Article
País de afiliación:
Países Bajos
Pais de publicación:
Reino Unido