Your browser doesn't support javascript.
loading
Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome.
Crooke, Stephen N; Ovsyannikova, Inna G; Kennedy, Richard B; Poland, Gregory A.
Afiliación
  • Crooke SN; Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA.
  • Ovsyannikova IG; Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA.
  • Kennedy RB; Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA.
  • Poland GA; Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA. poland.gregory@mayo.edu.
Sci Rep ; 10(1): 14179, 2020 08 25.
Article en En | MEDLINE | ID: mdl-32843695
A novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across the globe, infecting millions of people and generating societal disruption on a level not seen since the 1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of knowledge regarding viral epitopes targeted during an immune response, and the need for more in-depth knowledge on betacoronavirus immunology. To that end, we developed a computational workflow using a series of open-source algorithms and webtools to analyze the proteome of SARS-CoV-2 and identify putative T cell and B cell epitopes. Utilizing a set of stringent selection criteria to filter peptide epitopes, we identified 41 T cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell epitopes that could serve as promising targets for peptide-based vaccine development against this emerging global pathogen. To our knowledge, this is the first study to comprehensively analyze all 10 (structural, non-structural and accessory) proteins from SARS-CoV-2 using predictive algorithms to identify potential targets for vaccine development.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neumonía Viral / Proteínas Virales / Infecciones por Coronavirus / Epítopos de Linfocito T / Epítopos de Linfocito B / Biología Computacional / Interacciones Huésped-Patógeno / Betacoronavirus Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neumonía Viral / Proteínas Virales / Infecciones por Coronavirus / Epítopos de Linfocito T / Epítopos de Linfocito B / Biología Computacional / Interacciones Huésped-Patógeno / Betacoronavirus Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido